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Abstract— Many widely-used aerospace data visualization 
tools are interactive in nature and are programmed to run on 
a single processor. While such tools support real-time 
manipulation of simulation environments, the computations 
that generate the data are often batch oriented and 
computation intensive. In many cases, the data generation 
software is too tuned to a single-processor infrastructure to 
be readily adapted for emerging parallel and grid computing 
environments. This paper presents several lessons learned 
from adapting an aerospace engineering tool to the parallel 
and grid computing architecture. The architecture provides 
the ability to perform high-power computing by distributing 
process execution across many computers connected by a 
dedicated network or the internet. Some of the challenging 
tasks involved in the adaptation are (1) to decouple the user 
interface and display functions from the computational 
functions, since interaction and graphics are usually 
unnecessary expenses in parallel and grid computing, (2) to 
identify and parallelize computationally expensive functions 
without the drastic modification of the code and data 
structures, (3) to find a lightweight, yet versatile software 
solution for a client-server machine interface for remote job 
execution. The solutions we found for these elaborate tasks 
are presented and their pros and cons are discussed.1 2 
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1. INTRODUCTION 

As the computational resources and processing power 
become readily available, science and engineering tools are 
being adapted to take advantage of parallel and grid 
computing.  These computing methods provide improved 
performance by distributing process execution across many 
computers connected by a dedicated network or the internet 
[1,2]. This paper presents lessons learned from adapting an 
aerospace engineering tool called Satellite Orbit Analysis 
1                                                             
1 1-4244-0525-4/07/$20.00 ©2007 IEEE. 
2 IEEEAC paper #1067, Version 1, Updated October 27, 2006 

Program (SOAP) to the parallel and grid computing 
environment.  

SOAP is a widely used tool within the aerospace 
community for the visualization and analysis of space 
missions. Initially, all of the software ran in single processor 
mode. However, mission trade studies involve multiple 
independent SOAP runs, and the total CPU time required 
for lengthy missions can reach over one thousand CPU 
hours. The high computational requirement prohibited Team 
X at JPL and the Concept Design Center (CDC) at The 
Aerospace Corporation from performing trades and 
coverage analyses in a concurrent engineering environment. 
We have developed parallel computing and remote 
execution capabilities in SOAP in order to reduce the per-
study duration and cost of mission trade studies. This is the 
topic covered by the rest of this paper.  

2. PARALLEL COMPUTING 

As a prerequisite to the parallel computing development, we 
developed a version of SOAP that can be configured to 
execute in either parallel or interactive mode. In the parallel 
mode, the user interface and the display are suppressed, and 
only the computational components are executed as a batch 
job on the server. The results are then conveyed back to the 
client machine, where they may be interactively viewed by a 
client machine version, which employs the user interface 
and visualization components.  The decoupling of graphics 
and visualization eliminates their unnecessary expense of 
computational power in the parallel and grid computing 
environment. In the graphics-free batch-mode executable on 
the server, the graphical and user-interface functions have 
been mapped to empty stub functions. This allows the 
domain-specific application code to appear the same while it 
simply linked to null library functions having the same 
Application Programmer's Interface (API). 

The parallel computing development starts with identifying 
the computational components in the code that can benefit 
the most from parallelization. The ideal candidates are those 
that are easy to partition into quasi-independent executions. 
For example, a loop that calculates separate function 
evaluations on independent variables is ideal. The 
development of parallelization of the loop involves a 
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partitioning of the loop into independent jobs and the 
collection of the job results at the end. If the partitioned jobs 
are coupled, the result of a partition needs to be sent to other 
partitions that have the coupling with the sender. The 
message passing between the processors due to the job 
coupling and synchronization unavoidably reduces the 
parallel speed-up. Therefore, the less coupled the partitioned 
job becomes, the more the overall job performance 
improves. 

Another important feature to look for in the identification of 
the parallel computation component is computational 
intensity. It is ideal to parallelize the most computationally 
expensive parts, because these dominate the execution time. 
For example, if one part takes W fraction of the total 
computation time and is parallelized up to the ideal limit, 
the speed-up of the total computation time with n number of 
processors will have the upper limit given by  

! 

speedup =
1

(1"W ) +W /n
                  (1) 

The equation shows that as W becomes close to 1 the speed-
up approaches n. Conversely, as W becomes close to 0 the 
speed-up approaches 1. Therefore, the parallelization speed-
up is greatly determined by W the computation time of the 
parallelized part in terms of the fraction of the total 
computation time.    

Guided by these heuristics, we have selected two routines in 
SOAP as the first targets for parallelization. They are 
“Parametric Study” and “Contour Calculation” modules. 
The associated routines compute one or more analytical 
functions in a loop and become quickly computationally 
intensive as report duration, time resolution, and variable 
complexity increase. The parametric study is a loop in a 
variable domain while the contour calculation is a loop in a 
spatial domain. The result of each variable and spatial 
coupling is completely independent, so that message passing 
is not needed in the parallel execution of the loop.   

The variable and spatial domains in the two functions are 
sliced and distributed to processors proportional to their 
processing powers. Faster computers are assigned more jobs 
than slower computers. This job distribution scheme is 
essential when a cluster computer is composed of 
heterogeneous computers with different processing powers. 
The result of the partitioned computation is collected at the 
end of the computation. A single processor handles the task 
of writing the numeric results to a file. Minimal message 
passing ensures the faster execution of the parallel 
implementation.  

The message passing between processors and the 
synchronization of the parallel execution are handled by 
Message Passing Interface (MPI) library, the most 
commonly used library for parallel computing in a 
distributed memory architecture [3]. Only a few key 

functions in MPI are used for the present work. The 
MPI_Bcast function is used for the result collection after the 
parallel execution of the loop is complete. The MPI_Barrier 
function is used between the end of the parallel execution 
and the beginning of the local result collection so that 
message passing is not timed out by a processor which is 
delayed in finishing the parallel job. The MPI_Send and 
MPI_Recv functions are used in place of the MPI_Bcast 
when only one processor is required to have the complete 
array of results and write out the results.  

The two parallel routines are tested on JPL’s Dell Cluster 
Computer to benchmark the performance. The cluster 
computer is composed of 1024 Intel Pentium 4 Xeon 
processors with 3.2 GHz clock speed, 1MB cache, 32-bit 
integer, and 2 GB  memory per CPU. Each processor is 
connected by Myricom Myrinet-2000 fibre interconnect. It 
can provide 6.55 TFLOPS at peak.    

The parallel parametric study routine is tested with the study 
in a 50x50x50 variable grid that determines the best 
combination of right-ascending node and solar panel 
orientation for a Mars orbiter that would maximize the 
intensity of sunlight on the panels for a given 3-day period. 
Figure 1 shows the performance of the study with respect to 
number of processors used. The speed-up is given by the 
ratio of the computation time on single processor to the time 
on multiple processors. The speed-up is almost linear to the 
number of processors up to 32, and the speed-up of 234.3 is 
obtained with 256 processors. The robust speed-up is due to 
the fact that most of the computation time is spent on the 
parallel computation portions of the code as opposed to 
those based on sequential execution. 

The parallel contour calculation routine is also tested on 
JPL’s Dell Cluster Computer. The test example is to 
calculate the fraction of time at least one of two satellites in 
elliptical orbits is visible from the Earth for 24 hours over a 
120x120 planetary surface grid. Figure 2 shows the 
performance of the study with respect to the number of 
processors used. The improvement in performance is less 
ideal than the parametric study example. The weaker 
improvement is due to the short computation time in 
parallel. In this case, the amount of non-parallel calculations 
portions, such as initial setup and final result collection is 
approaches that of which can be executed in parallel. We 
expect that when the study involves longer periods of 
parallel computation, the speed-up will improve.  This 
would happen if the time domain or sampling rate of the 
study was increased  
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Figure 1. Speed-up of the parallel parametric study 
routine on JPL’s Dell Cluster Computer. 

 

Figure 2. Speed-up of the parallel contour calculation 
routine on JPL’s Dell Cluster Computer. 

3. GRID COMPUTING 

The notion of grid computing, in a broad sense, is to use the 
resources of many separate computers connected by a 
network. In the context of the present work, this involves 
the use the remote cluster resource from a user client 
machine through a lightweight tool. For the SOAP effort, 
the remote job manager had to satisfy the following 
requirements: (1) support secure password and data 
transport, (2) be compatible with SOAP Windows, 
Macintosh OS X, and Linux client platforms. 

In compliance with these requirements, we have developed 
a remote job manager for the user interface between the 
parallel SOAP on a remote cluster computer and the serial 
SOAP on a user client machine. The manager handles a job 
submission, job query, job killing, job result retrieval, and 
job cleaning upon a user’s demand. The manger is written in 
Python and uses OpenSSH for the secure connection 
between two machines. Both Python and OpenSSH are 

available for all four major client platforms and are open-
source products. Furthermore, both programs are well 
maintained by a large community, providing a reliable 
software platform for future development.  

 

 

Figure 3. Overall architecture of the remote job 
manager for the execution of the parallel SOAP in the 

grid computing environment. 

 

In the manager, process execution and error handling is 
controlled by Pexpect, which is a Pure Python module for 
spawning child applications such as ssh, ftp, passwd, telnet, 
controlling them, and responding to their output and errors 
[4]. One of the important tasks done via Pexpect is to 
securely send the password to ssh and scp for remote login 
and remote file transfer, respectively. For security reasons, 
OpenSSH’s ssh and scp commands both rely on the POSIX 
TTY terminal to accept passwords rather than STDIN. 
Pexpect supports this security behavior. Additionally, 
because Pexpect is implemented as a Python package, the 
functionality of sending passwords is done entirely within 
the same process-space as the host process that embeds 
and/or imports the Pexect module. OpenSSH’s reliance on 
the TTY terminal however becomes a drawback since 
Pexpect has to be run from within a POSIX compliant 
environment such as Linux and MAC OS X. For Windows, 
a Python interpreter alone is insufficient. Python must be 
run from within Cygwin which is the POSIX port for 
Windows. Cygwin provides a Linux-like environment and 
provides many Unix API functionalities [5]. 

The remote execution of SOAP is initiated by transferring 
an input file from the user machine to remote machine using 
the scp command and executing a remote shell script on the 
cluster computer using the ssh command. The remote shell 
script first processes the input argument from the user 
machine, edits the user-provided input file to make it 
compatible with the parallel (server) version of SOAP, and 
then initiates a job submission by invoking the command of 
the local scheduler (LSF on JPL’s Dell Cluster computer). 
After the job submission, the user can query whether job is 
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running properly or has been completed. When the job is 
completed, the results can be retrieved by using the same 
ssh and scp command mechanisms as for the job 
submission. All the commands are integrated into Python 
module so that the user does not have to directly use the ssh 
and scp commands.  Figure 3 summarizes the architecture of 
the developed remote job manager.   

The job manager is tested on Unix, MAC OS X, and 
Windows machines. In Unix and MAC OS X machines, 
OpenSSH and Python are often already installed. The 
installation of the remote job manager is simply to compile 
the python scripts we have written. For Windows machine, 
Cygwin environment is used to install OpenSSH commands 
and Python. 

As alternatives, we have also considered other approaches 
such as (Simple Object Access Protocol (SOAP)/XML web 
services approach [6] and Globus Toolkit [7]. While these 
approaches are more versatile than OpenSSH and Python, 
the libraries and tools that support these approaches are not 
as standardized. They require the development of specific 
C/C++ APIs to couple with the web services and Globus 
libraries. Especially, the Globus libraries are huge (over 1 
GB) even with the minimum set of files, making the porting 
of Globus-based applications to a client machine difficult. 
Some of Globus libraries such as GRAM are currently 
incompatible with Windows platform. The libraries for 
SOAP/XML web services and Globus are expected to 
mature and become more platform-independent in near 
future. Therefore, these alternative approaches provide a 
long-term solution for a versatile remote job and resource 
allocation manager. 

Another reason we decided not to use Globus was a direct 
result from policy restrictions of the cluster we were using. 
For security reasons, the cluster does not permit daemons to 
be installed and run directly from the front-end node of the 
cluster. The Globus approach would have required setting 
up some http daemon such as Apache Tomcat for Web 
Services, GridFTP for file transfer, etc. on the cluster. 
Additionally, the client-side file size and dependency 
requirements of Globus 4 were not favored by the customer 
requirements. The server-side installation requirements with 
the Globus approach would have violated policy restrictions 
of the cluster deployment. 

By developing a remote job management API that leverages 
OpenSSH, we were able to satisfy the light-weight 
requirements on the client-side, as well as the server-side 
restrictions of no additional services or daemons installed. 
The functionality of the remote job management API 
requires only ssh and scp interaction with the cluster—
which is a status quo standard. 

This approach also permits future enabling of Globus or 
other simpler Web Services to the restricted cluster by 
exposing the remote job management API as a service on 
another machine. This allows the cluster to remain secure, 

while another machine that uses the remote job management 
API can act as a Web Services provider. All requests to this 
machine will be delegated to the cluster via the job 
management API. 

4. CONCLUSIONS 

We have adapted the SOAP aerospace engineering 
application to the parallel and grid computing environment. 
Two computationally intensive capabilities are parallelized 
using the MPI library. In the spirit of grid computing, a 
lightweight tool for remote job management has been 
developed. The parallelized SOAP demonstrates the speed-
up that is almost ideal up to 64 processors. The remote job 
manager allows users to execute a job using the parallel 
version of SOAP on a remote cluster computer, to monitor 
job status and to retrieve job results.   
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